os/unix/ngx_automic.h源代码分析
本文我们主要介绍一下与原子锁相关的部分:ngx_automic.h
1. os/unix/ngx_automic.h源文件
源文件内容如下:
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
*/
#ifndef _NGX_ATOMIC_H_INCLUDED_
#define _NGX_ATOMIC_H_INCLUDED_
#include <ngx_config.h>
#include <ngx_core.h>
#if (NGX_HAVE_LIBATOMIC)
#define AO_REQUIRE_CAS
#include <atomic_ops.h>
#define NGX_HAVE_ATOMIC_OPS 1
typedef long ngx_atomic_int_t;
typedef AO_t ngx_atomic_uint_t;
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#if (NGX_PTR_SIZE == 8)
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#else
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#endif
#define ngx_atomic_cmp_set(lock, old, new) \
AO_compare_and_swap(lock, old, new)
#define ngx_atomic_fetch_add(value, add) \
AO_fetch_and_add(value, add)
#define ngx_memory_barrier() AO_nop()
#define ngx_cpu_pause()
#elif (NGX_DARWIN_ATOMIC)
/*
* use Darwin 8 atomic(3) and barrier(3) operations
* optimized at run-time for UP and SMP
*/
#include <libkern/OSAtomic.h>
/* "bool" conflicts with perl's CORE/handy.h */
#if 0
#undef bool
#endif
#define NGX_HAVE_ATOMIC_OPS 1
#if (NGX_PTR_SIZE == 8)
typedef int64_t ngx_atomic_int_t;
typedef uint64_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#define ngx_atomic_cmp_set(lock, old, new) \
OSAtomicCompareAndSwap64Barrier(old, new, (int64_t *) lock)
#define ngx_atomic_fetch_add(value, add) \
(OSAtomicAdd64(add, (int64_t *) value) - add)
#else
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#define ngx_atomic_cmp_set(lock, old, new) \
OSAtomicCompareAndSwap32Barrier(old, new, (int32_t *) lock)
#define ngx_atomic_fetch_add(value, add) \
(OSAtomicAdd32(add, (int32_t *) value) - add)
#endif
#define ngx_memory_barrier() OSMemoryBarrier()
#define ngx_cpu_pause()
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#elif (NGX_HAVE_GCC_ATOMIC)
/* GCC 4.1 builtin atomic operations */
#define NGX_HAVE_ATOMIC_OPS 1
typedef long ngx_atomic_int_t;
typedef unsigned long ngx_atomic_uint_t;
#if (NGX_PTR_SIZE == 8)
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#else
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#endif
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define ngx_atomic_cmp_set(lock, old, set) \
__sync_bool_compare_and_swap(lock, old, set)
#define ngx_atomic_fetch_add(value, add) \
__sync_fetch_and_add(value, add)
#define ngx_memory_barrier() __sync_synchronize()
#if ( __i386__ || __i386 || __amd64__ || __amd64 )
#define ngx_cpu_pause() __asm__ ("pause")
#else
#define ngx_cpu_pause()
#endif
#elif ( __i386__ || __i386 )
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#if ( __SUNPRO_C )
#define NGX_HAVE_ATOMIC_OPS 1
ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set);
ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add);
/*
* Sun Studio 12 exits with segmentation fault on '__asm ("pause")',
* so ngx_cpu_pause is declared in src/os/unix/ngx_sunpro_x86.il
*/
void
ngx_cpu_pause(void);
/* the code in src/os/unix/ngx_sunpro_x86.il */
#define ngx_memory_barrier() __asm (".volatile"); __asm (".nonvolatile")
#else /* ( __GNUC__ || __INTEL_COMPILER ) */
#define NGX_HAVE_ATOMIC_OPS 1
#include "ngx_gcc_atomic_x86.h"
#endif
#elif ( __amd64__ || __amd64 )
typedef int64_t ngx_atomic_int_t;
typedef uint64_t ngx_atomic_uint_t;
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#if ( __SUNPRO_C )
#define NGX_HAVE_ATOMIC_OPS 1
ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set);
ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add);
/*
* Sun Studio 12 exits with segmentation fault on '__asm ("pause")',
* so ngx_cpu_pause is declared in src/os/unix/ngx_sunpro_amd64.il
*/
void
ngx_cpu_pause(void);
/* the code in src/os/unix/ngx_sunpro_amd64.il */
#define ngx_memory_barrier() __asm (".volatile"); __asm (".nonvolatile")
#else /* ( __GNUC__ || __INTEL_COMPILER ) */
#define NGX_HAVE_ATOMIC_OPS 1
#include "ngx_gcc_atomic_amd64.h"
#endif
#elif ( __sparc__ || __sparc || __sparcv9 )
#if (NGX_PTR_SIZE == 8)
typedef int64_t ngx_atomic_int_t;
typedef uint64_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#else
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#endif
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#if ( __SUNPRO_C )
#define NGX_HAVE_ATOMIC_OPS 1
#include "ngx_sunpro_atomic_sparc64.h"
#else /* ( __GNUC__ || __INTEL_COMPILER ) */
#define NGX_HAVE_ATOMIC_OPS 1
#include "ngx_gcc_atomic_sparc64.h"
#endif
#elif ( __powerpc__ || __POWERPC__ )
#define NGX_HAVE_ATOMIC_OPS 1
#if (NGX_PTR_SIZE == 8)
typedef int64_t ngx_atomic_int_t;
typedef uint64_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#else
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#endif
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#include "ngx_gcc_atomic_ppc.h"
#endif
#if !(NGX_HAVE_ATOMIC_OPS)
#define NGX_HAVE_ATOMIC_OPS 0
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set)
{
if (*lock == old) {
*lock = set;
return 1;
}
return 0;
}
static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
{
ngx_atomic_int_t old;
old = *value;
*value += add;
return old;
}
#define ngx_memory_barrier()
#define ngx_cpu_pause()
#endif
void ngx_spinlock(ngx_atomic_t *lock, ngx_atomic_int_t value, ngx_uint_t spin);
#define ngx_trylock(lock) (*(lock) == 0 && ngx_atomic_cmp_set(lock, 0, 1))
#define ngx_unlock(lock) *(lock) = 0
#endif /* _NGX_ATOMIC_H_INCLUDED_ */
2. 执行NGX_HAVE_GCC_ATOMIC代码
由于我们在执行configure时生成的头文件中定义了NGX_HAVE_GCC_ATOMIC
,因此这里我们执行如下:
#if (NGX_HAVE_LIBATOMIC)
#elif (NGX_DARWIN_ATOMIC)
#elif (NGX_HAVE_GCC_ATOMIC)
/* GCC 4.1 builtin atomic operations */
#define NGX_HAVE_ATOMIC_OPS 1
typedef long ngx_atomic_int_t;
typedef unsigned long ngx_atomic_uint_t;
#if (NGX_PTR_SIZE == 8)
#define NGX_ATOMIC_T_LEN (sizeof("-9223372036854775808") - 1)
#else
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
#endif
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define ngx_atomic_cmp_set(lock, old, set) \
__sync_bool_compare_and_swap(lock, old, set)
#define ngx_atomic_fetch_add(value, add) \
__sync_fetch_and_add(value, add)
#define ngx_memory_barrier() __sync_synchronize()
#if ( __i386__ || __i386 || __amd64__ || __amd64 )
#define ngx_cpu_pause() __asm__ ("pause")
#else
#define ngx_cpu_pause()
#endif
#elif ( __i386__ || __i386 )
#elif ( __amd64__ || __amd64 )
#elif ( __sparc__ || __sparc || __sparcv9 )
#elif ( __powerpc__ || __POWERPC__ )
#endif
如上,NGX_PTR_SIZE
在我们当前环境下为4,因此:
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
在我们当前环境定义了__i386__
与__i386
,因此会执行如下:
#define ngx_cpu_pause() __asm__ ("pause")
下面我们介绍一下gcc中的一些内置原子函数:
2.1 gcc内置原子函数
参看:《Using the GNU Compiler Collection》 p462
gcc从4.1.2开始提供了__sync_*
系列的built-in函数,用于提供加减和逻辑运算的原子操作:
1)
type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)
上面这组built-in原子函数会根据其名称所示执行相应的操作,并且返回内存中更新之前的值。即:
{ tmp = *ptr; *ptr op= value; return tmp; } { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
注意:GCC 4.4及之后的版本__sync_fetch_and_nand
的实现变为:*ptr = ~(tmp & value), 而不是 *ptr = ~tmp & value .
2)
type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)
上面这组built-in原子函数会根据其名称所示执行相应的操作,并且返回内存中更新之后的值。即:
{ *ptr op= value; return *ptr; } { *ptr = ~(*ptr & value); return *ptr; } // nand
注意:GCC 4.4及之后的版本__sync_nand_and_fetch
的实现变为:ptr =~(ptr & value), 而不是 ptr = ~ptr & value .
3)
bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)
上面这两个函数提供原子的比较和交换:如果 *ptr == oldval,就将 newval 写入 *ptr. 其中第一个函数在相等并写入的情况下返回true; 第二个函数返回操作之前的值。
说明: 上述 “__sync_*” 函数中type可以是1,2,4或8字节长度的 “整数” 类型或 “浮点” 类型: int8_t / uint8_t int16_t / uint16_t int32_t / uint32_t int64_t / uint64_t 后面的可扩展参数(...)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier (类似于linux kernel中的mb(),表示这个操作之前的所有内存操作不会重排序到这个操作之后), 所以 可以忽略这个参数。
4)
__sync_synchronize (...)
函数发出一个full memory barrier。
关于memory barrier, cpu会对我们的指令进行排序,一般来说会提高程序的效率,但有时候可能造成我们不希望看到的结果。举一个例子,比如我们一个硬件设备,它有4个寄存器,当你发出一个操作指令的时候,一个寄存器存的是你的操作指令(比如READ),两个寄存器存的是参数(比如addr和size),最后一个寄存器是控制寄存器,在所有的参数都设置好之后向其发出指令,设备开始读取参数,执行命令。程序可能如下:
write1(dev.register_size,size); write1(dev.register_addr,addr); write1(dev.register_cmd,READ); write1(dev.register_control,GO);
如果最后一条write1被换到了前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制cpu执行完前面的写入以后再执行最后一条:
write1(dev.register_size,size); write1(dev.register_addr,addr); write1(dev.register_cmd,READ); __sync_synchronize(); write1(dev.register_control,GO);
memory barrier有几种类型:
-
acquire barrier: 不允许将barrier之后的内存读取指令移到barrier之前(linux kernel中的wmb())
-
release barrier: 不允许将barrier之前的内存读取指令移到barrier之后(linux kernel中的rmb())
-
full barrier: 以上两种barrier的合集(linux kernel中的mb())
5)
type __sync_lock_test_and_set (type *ptr, type value, ...)
void __sync_lock_release (type *ptr, ...)
上面第一个函数将*ptr
设为value,并返回*ptr
操作之前的值; 第二个函数将*ptr
置为0.
6)
示例:
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
static int count = 0;
void *test_func(void *arg)
{
int i=0;
for(i=0;i<20000;++i){
__sync_fetch_and_add(&count,1);
}
return NULL;
}
int main(int argc, const char *argv[])
{
pthread_t id[20];
int i = 0;
for(i=0;i<20;++i){
pthread_create(&id[i],NULL,test_func,NULL);
}
for(i=0;i<20;++i){
pthread_join(id[i],NULL);
}
printf("%d\n",count);
return 0;
}
编译运行:
[root@localhost test-src]# gcc -o test8 test8.c -lpthread [root@localhost test-src]# ./test8 count: 400000
3. 其他
#if !(NGX_HAVE_ATOMIC_OPS)
#define NGX_HAVE_ATOMIC_OPS 0
typedef int32_t ngx_atomic_int_t;
typedef uint32_t ngx_atomic_uint_t;
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
#define NGX_ATOMIC_T_LEN (sizeof("-2147483648") - 1)
static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set)
{
if (*lock == old) {
*lock = set;
return 1;
}
return 0;
}
static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
{
ngx_atomic_int_t old;
old = *value;
*value += add;
return old;
}
#define ngx_memory_barrier()
#define ngx_cpu_pause()
#endif
void ngx_spinlock(ngx_atomic_t *lock, ngx_atomic_int_t value, ngx_uint_t spin);
#define ngx_trylock(lock) (*(lock) == 0 && ngx_atomic_cmp_set(lock, 0, 1))
#define ngx_unlock(lock) *(lock) = 0
NGX_HAVE_ATOMIC_OPS
在上一节已经定义为1,因此这里:
#if !(NGX_HAVE_ATOMIC_OPS) ... #endif
并不会被执行。
关于ngx_spinlock()我们会在后续进行讲解。
[参看]: