os/unix/ngx_readv_chain.c源代码分析
本节我们讲述一下ngx_readv_chain.c文件,其主要是用于分散读取数据到ngx_chain_t中。
1. os/unix/ngx_readv_chain.c源文件
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
*/
#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>
ssize_t
ngx_readv_chain(ngx_connection_t *c, ngx_chain_t *chain, off_t limit)
{
u_char *prev;
ssize_t n, size;
ngx_err_t err;
ngx_array_t vec;
ngx_event_t *rev;
struct iovec *iov, iovs[NGX_IOVS_PREALLOCATE];
rev = c->read;
#if (NGX_HAVE_KQUEUE)
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
ngx_log_debug3(NGX_LOG_DEBUG_EVENT, c->log, 0,
"readv: eof:%d, avail:%d, err:%d",
rev->pending_eof, rev->available, rev->kq_errno);
if (rev->available == 0) {
if (rev->pending_eof) {
rev->ready = 0;
rev->eof = 1;
ngx_log_error(NGX_LOG_INFO, c->log, rev->kq_errno,
"kevent() reported about an closed connection");
if (rev->kq_errno) {
rev->error = 1;
ngx_set_socket_errno(rev->kq_errno);
return NGX_ERROR;
}
return 0;
} else {
return NGX_AGAIN;
}
}
}
#endif
prev = NULL;
iov = NULL;
size = 0;
vec.elts = iovs;
vec.nelts = 0;
vec.size = sizeof(struct iovec);
vec.nalloc = NGX_IOVS_PREALLOCATE;
vec.pool = c->pool;
/* coalesce the neighbouring bufs */
while (chain) {
n = chain->buf->end - chain->buf->last;
if (limit) {
if (size >= limit) {
break;
}
if (size + n > limit) {
n = (ssize_t) (limit - size);
}
}
if (prev == chain->buf->last) {
iov->iov_len += n;
} else {
if (vec.nelts >= IOV_MAX) {
break;
}
iov = ngx_array_push(&vec);
if (iov == NULL) {
return NGX_ERROR;
}
iov->iov_base = (void *) chain->buf->last;
iov->iov_len = n;
}
size += n;
prev = chain->buf->end;
chain = chain->next;
}
ngx_log_debug2(NGX_LOG_DEBUG_EVENT, c->log, 0,
"readv: %ui, last:%uz", vec.nelts, iov->iov_len);
do {
n = readv(c->fd, (struct iovec *) vec.elts, vec.nelts);
if (n == 0) {
rev->ready = 0;
rev->eof = 1;
#if (NGX_HAVE_KQUEUE)
/*
* on FreeBSD readv() may return 0 on closed socket
* even if kqueue reported about available data
*/
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
rev->available = 0;
}
#endif
return 0;
}
if (n > 0) {
#if (NGX_HAVE_KQUEUE)
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
rev->available -= n;
/*
* rev->available may be negative here because some additional
* bytes may be received between kevent() and readv()
*/
if (rev->available <= 0) {
if (!rev->pending_eof) {
rev->ready = 0;
}
rev->available = 0;
}
return n;
}
#endif
if (n < size && !(ngx_event_flags & NGX_USE_GREEDY_EVENT)) {
rev->ready = 0;
}
return n;
}
err = ngx_socket_errno;
if (err == NGX_EAGAIN || err == NGX_EINTR) {
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, c->log, err,
"readv() not ready");
n = NGX_AGAIN;
} else {
n = ngx_connection_error(c, err, "readv() failed");
break;
}
} while (err == NGX_EINTR);
rev->ready = 0;
if (n == NGX_ERROR) {
c->read->error = 1;
}
return n;
}
下面我们对ngx_readv_chain()函数做一个简单的解释:
1) 对kqueue情形下rev->available的处理
#if (NGX_HAVE_KQUEUE)
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
ngx_log_debug3(NGX_LOG_DEBUG_EVENT, c->log, 0,
"readv: eof:%d, avail:%d, err:%d",
rev->pending_eof, rev->available, rev->kq_errno);
if (rev->available == 0) {
if (rev->pending_eof) {
rev->ready = 0;
rev->eof = 1;
ngx_log_error(NGX_LOG_INFO, c->log, rev->kq_errno,
"kevent() reported about an closed connection");
if (rev->kq_errno) {
rev->error = 1;
ngx_set_socket_errno(rev->kq_errno);
return NGX_ERROR;
}
return 0;
} else {
return NGX_AGAIN;
}
}
}
#endif
当前我们采用的是epoll模型,因此这里并不会执行。
2) 合并ngx_chain_t中相邻的buf
ssize_t
ngx_readv_chain(ngx_connection_t *c, ngx_chain_t *chain, off_t limit)
{
...
prev = NULL;
iov = NULL;
size = 0;
vec.elts = iovs;
vec.nelts = 0;
vec.size = sizeof(struct iovec);
vec.nalloc = NGX_IOVS_PREALLOCATE;
vec.pool = c->pool;
/* coalesce the neighbouring bufs */
while (chain) {
n = chain->buf->end - chain->buf->last;
if (limit) {
if (size >= limit) {
break;
}
if (size + n > limit) {
n = (ssize_t) (limit - size);
}
}
if (prev == chain->buf->last) {
iov->iov_len += n;
} else {
if (vec.nelts >= IOV_MAX) {
break;
}
iov = ngx_array_push(&vec);
if (iov == NULL) {
return NGX_ERROR;
}
iov->iov_base = (void *) chain->buf->last;
iov->iov_len = n;
}
size += n;
prev = chain->buf->end;
chain = chain->next;
}
...
}
这里我们首先再次给出ngx_chain_t
的结构:
当前空闲的空间为ngx_buf_s->last到ngx_buf_s->end之间的那一部分空间。
3) 读取fd中的数据
这里我们看到调用readv()分散读取数据:
n = readv(c->fd, (struct iovec *) vec.elts, vec.nelts);
根据返回值n做不同的处理:
- 返回值为0
if (n == 0) {
rev->ready = 0;
rev->eof = 1;
#if (NGX_HAVE_KQUEUE)
/*
* on FreeBSD readv() may return 0 on closed socket
* even if kqueue reported about available data
*/
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
rev->available = 0;
}
#endif
return 0;
}
此中情况一般表示为读到了文件的结尾。对于NGX_HAVE_KQUEUE
这种情况,即使kqueue报告有可用数据,readv()在已关闭的socket上也会返回0.
- 返回值>0
if (n > 0) {
#if (NGX_HAVE_KQUEUE)
if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
rev->available -= n;
/*
* rev->available may be negative here because some additional
* bytes may be received between kevent() and readv()
*/
if (rev->available <= 0) {
if (!rev->pending_eof) {
rev->ready = 0;
}
rev->available = 0;
}
return n;
}
#endif
if (n < size && !(ngx_event_flags & NGX_USE_GREEDY_EVENT)) {
rev->ready = 0;
}
return n;
}
此种情况成功读取到了数据。对于NGX_HAVE_KQUEUE
这种情况下,因为在kevent()报告拥有数据可读到真正读取数据这段时间内,可能会有新的数据到来,因此实际读取的数据可能会比报告的更多,导致rev->available小于0的情况出现。
对于epoll模型用到NGX_USE_GREEDY_EVENT
标志,则表示需要一直进行读取数据,直到遇到EAGAIN错误为止。
- 返回值<0
err = ngx_socket_errno;
if (err == NGX_EAGAIN || err == NGX_EINTR) {
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, c->log, err,
"readv() not ready");
n = NGX_AGAIN;
} else {
n = ngx_connection_error(c, err, "readv() failed");
break;
}
此种情况下,有两种特例: NGX_EAGAIN
以及NGX_EINTR
。
NGX_EINTR
这种情况是受到信号中断的影响,一般重新读取即可。对于NGX_EAGAIN
一般表示当前并没有数据,此时不应该再进行继续读取数据操作了(但是此种情况并不真正表示数据读取出错了)。